vllm.lora.int4_utils ¶
INT4 Unpacking Utilities for LoRA Compatibility in vLLM.
This module provides utilities to unpack INT4 quantized weights to floating-point format, enabling LoRA adapter injection on compressed models.
INT4Unpacker ¶
Manages unpacking and caching of INT4 weights for LoRA compatibility.
This class handles the conversion of packed INT4 weights (stored as uint8) back to floating-point tensors that can be used with LoRA adapters.
Source code in vllm/lora/int4_utils.py
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 | |
__init__ ¶
clear_cache ¶
Clear the unpacked weights cache to free memory.
Source code in vllm/lora/int4_utils.py
get_cache_stats ¶
Get cache statistics.
Source code in vllm/lora/int4_utils.py
is_int4_quantized ¶
Check if a module has INT4 quantized weights.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
module | Module | PyTorch module to check | required |
Returns:
| Type | Description |
|---|---|
bool | True if module has packed INT4 weights |
Source code in vllm/lora/int4_utils.py
unpack_int4_weights ¶
unpack_int4_weights(
packed_weights: Tensor,
scales: Tensor,
zero_points: Tensor | None = None,
group_size: int | None = None,
output_dtype: dtype = float16,
) -> Tensor
Unpack INT4 quantized weights to floating-point format.
INT4 weights are stored with 2 values per byte in a uint8 tensor. This function unpacks them and dequantizes using provided scales and zero points.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
packed_weights | Tensor | Packed INT4 weights as uint8, shape [out_features, in_features // 2] | required |
scales | Tensor | Quantization scales - Per-tensor: shape [1] - Per-channel: shape [out_features] - Grouped: shape [out_features, num_groups] | required |
zero_points | Tensor | None | Optional zero points for asymmetric quantization | None |
group_size | int | None | Group size for grouped quantization (e.g., 128) | None |
output_dtype | dtype | Output dtype (default: torch.float16) | float16 |
Returns:
| Type | Description |
|---|---|
Tensor | Unpacked and dequantized weights with shape [out_features, in_features] |
Source code in vllm/lora/int4_utils.py
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 | |
unpack_module ¶
unpack_module(
module: Module,
module_name: str,
force: bool = False,
output_dtype: dtype = float16,
) -> Tensor | None
Unpack INT4 weights from a module, with caching.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
module | Module | PyTorch module with packed weights | required |
module_name | str | Unique name for caching | required |
force | bool | If True, bypass cache and re-unpack | False |
output_dtype | dtype | Output dtype for unpacked weights | float16 |
Returns:
| Type | Description |
|---|---|
Tensor | None | Unpacked FP16 weights, or None if module is not quantized |
Source code in vllm/lora/int4_utils.py
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 | |
get_unpacker ¶
get_unpacker() -> INT4Unpacker
Get the global INT4 unpacker instance.
Returns:
| Type | Description |
|---|---|
INT4Unpacker | The global INT4Unpacker instance (creates one if it doesn't exist) |